EOG feature relevance determination for microsleep detection
نویسندگان
چکیده
منابع مشابه
Feature Fusion for the Detection of Microsleep Events
A combination of linear and nonlinear methods for feature fusion is introduced and the performance of this methodology is illustrated on a real-world problem: the detection of sudden and non-anticipated lapses of attention in car drivers due to drowsiness. To achieve this, signals coming from heterogeneous sources are processed, namely the brain electric activity, variation in the pupil size, a...
متن کاملMicrosleep Detection in Electrophysiological Signals
An adaptive biosignal analysis system for the detection of microsleep events is presented. The system was applied to the electroencephalogram and electrooculogram recorded of 23 young volunteers while performing monotonic overnight driving in our real car driving simulation laboratory. Biosignals during clear observable microsleep and non-microsleep events were processed and classified. Besides...
متن کاملFusion of State Space and Frequency- Domain Features for Improved Microsleep Detection
A novel approach for Microsleep Event detection is presented. This is achieved based on multisensor electroencephalogram (EEG) and electrooculogram (EOG) measurements recorded during an overnight driving simulation task. First, using video clips of the driving, clear Microsleep (MSE) and Non-Microsleep (NMSE) events were identified. Next, segments of EEG and EOG of the selected events were anal...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولEfficient Classification of EOG using CBFS Feature Selection Algorithm
This work select the features in high dimensional data using eye movements of reading and writing by ElectroOculoGraph (EOG) signals. EOG measures the changes in the electric potential field caused by eye movements. This work has three phases; the first phase identifies and removes noise from the signal. The second phase involves analysis of EOG signals by CBFS Feature Selection method and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Directions in Biomedical Engineering
سال: 2017
ISSN: 2364-5504
DOI: 10.1515/cdbme-2017-0053